Reprinted with permission from Games \& Puzzles magazine, Sep 1975 N 40, p37, Author David Wells a friend of mine. This is a different way of making the cube flexahedron without long bands so not a flexahedron is the same sense but very similar in other respects, also might be easier to manufacture. This method of connection could produce some very interesting puzzles as David suggests, like 64 cubes connected to fold into $4 \times 4 \times 4$ cube. He does not suggest trying 26 c's. then fold into a cube with void in center. Might be challenging to solve.

Figure 1:

To make the 6-cube ring place six cubes in a line face to face, and join 1 and 2 with a swallet hinge on their adjacent faces. Next join 2 and 3 also with a wallet hinge, but at right-angles to the first hinge. If the first was, say, vertical, make this one horizontal. Continue to the end of the line and finish by joining cube 6 to cube 1. The result is a ring with a surprising property: it will rotate so that it is continually turning itself inside out. Fig. 2 shows a sequence of five positions. Initially it is flat, a triangle with base North. Pairs of faces sandwiched between adjacent cubes separate at the top and continue to rotate away from each
while the two faces nearest us are coming together, until the triangle of cubes is reversed, with its base towards the viewer. The rotation need not stop here; it can continue indefinitely. Unfortunately, this model will do nothing but rotate, because it has only one degree of freedom.

TWO PUZZLING ${ }^{\text {6+1 }}$ MODELS ${ }^{440,75}$
 Figure 3:

Figure 2:
 Article

Figure 4: this easy operation can result in any of sixteen different large cubes.

Figure 5:

3

1

2
4

To enumerate all sixteen cubes is a puzzle in itself, but the variety of possibilities can be shown by colouring the faces of just one large cube. Because the surface area of a large cube is exactly one half of the total surface area of the eight small cubes, the area of the internal faces equals the area of the coloured faces. Is there another large cube in which all the coloured faces are internal and the uncoloured faces appear on the outside? Yes, there is, but it is not easy to find without practice.

Six and eight are not the only numbers of cubes which will make a ring. Going down, there is a ring of four cubes, but the inside of the ring is a single point! Going up, any even number of cubes will do. A problem I would dearly like to know the answer to is this one, naturally: In how many ways can a ring of 64 cubes be folded to make a $4 \times 4 \times 4$ cube? Is there a spare computer in the house?

