Quantum Chess, Reprinted with permission from The Pentagon, VXXVII, No.2, Spring 1968, pp 99103, Kappa Mu Epsilon student math magazine. (Reduces moves to simple equations on a six by eight chessboard with 5 basic piece shapes and eight total pieces per player.)

Quantum Chess

Douclas A. Fingel

Climax Mol P bdentm Co., Climax, Colorato

'Folay a great many chess games are played between computers and men. No computer program has yot been devised that wins cyery time against montal man, but there are some that come close. Perhaps man is aided by the fact that he has been playing for over a thousand years. At the same time it is man who hits created that dialmilic contraption, the computer. So if he begins to lose every time he can only blame himself.

Gibess is a highly mathematual game: In fact the noves of sevcral of the picees can be described by linear equations in x and y. For instance the rook can move any distance orthogonally in two directions. If one thinks of the rook's square as an origin equal to zero, then the moves of the rowk are described by the equations $x=n, y-0$, and $x=0, y-n$. After the rook is moved the square upon which it resitles is a new arigin equal to zero and the same set of equations applies to its fuhure movemont. One can describe the moves of the bishop by the equation $y=x$, where both dircetions of x and y are positive. Again the square whon which the bishop stands must be the zero point at all times for this equation to hold. The queen, of course moves aceording to botin the equations for the rook and the eguation for the hishop. The knight moves according to the equation $y=x^{2}+1$, where the only value x can litke is 1 . Hence the knight can mowe tron the sifure it stands upen any combination of the two orthogonal directions 1 and 2 . A smpler tquation could have been given for the: Knight, but the above one was given in order to show how one could sce some of the pieces as being described by a possibly more complex systan ihan is at lirst apparent.

The highly mathenaticol moves of the chessinan sugast that one could yary the game to take advantage of an cuen more purely mathematical st:ucture. One comld adid constants to the variables and cthervise change the game so that the moves atre recogriad more for their equations than the word rule for them. 'I'his change could result in a game in which one would write a set of equations and then play the garne.

A simple version of chess changed by changing the equations of motion of the pieces is played on a 6 by 8 board. The equations
of motion of the pieces and same of the pussible moves are shown in Fig. 2. Figure 1 shows a sngeesind opraing setup for beginning the game. The author has nomed this game quantum chess bocause only certain integral values are allowed x and y.

In Fig. 2 the piece $x^{2}+1$ can move any ecmbination of the distances (0,1) , (1,2) , (2,5), and (3 , scuare on border). Λ free path morst he open for any of these moves to take plame Il a man is captured he can only be captured at the exdpoint of the move. For instance, the $x^{2}+1$ piece in Fig. 2 can move to the right 3 squares and down to the border where a dot is placed to indicate thie moveThe move can take place if either the path down and to the right or to the right and down is open. The direction taken for x or y is, of course, arbitrary, but the x and y directions are always perpendicular. Since the x and y (positive) axes are arbitrary each equation
describes moves that are similar in each of the four quadrants. One of the curves described by the piece $x^{2}+1$ is shown by the curved line in Fig. 2.

$$
\text { FG. } 2
$$

One nf the pieces shown in lig 2 obcys the equation for a circle. Since this equation has integral solutions if either x or y is zero the piece can move any orthagonal distance in either direction like a rook. In addition the circle can move any combination of the two perpendicular distances 3 and 4, because 3 and 4 satisfy the equation,

$$
3^{2}+4^{2}=5^{2}
$$

The unit piece moves just like the king in chess. The game is won by capluring the unit. There are no pieces equivalent to the pawn as in chess.

The teminology 'annihilated' has been added for a piece that is captured. Strictly speaking anvihilation would have to destroy both pieces if any analogy with atomic praticles were to hold. Player and antiplayer can begin with the opening setup, shown in Fig. I. Some shapes for pieces are also suzgested in Fig. 1. If you have a chessboard you can place a strip of paper over the 2 by 8 portion of squares that is not used for (uantum chess. Since thare are six basieslly different pieces in chess you can use these for pieces of guanturn chess if yon want to. However, it is casy to cut the picces shown in Fip. 1 ort nt a squnte bar of woud. It will also be much less confusing since pieces logically resemble their equations of motion and will be casily remembered if they have the shapes shown.

On the opening moves the $C-1$ pice $\left(x=n_{2} y=1\right)$ camot move up and down but can move sideways. This ale is added so that a man cannot be captured on the first move. It appears that in the first tew momes the man to move first usually has a small advantage. As the game progresses it appears that the advantage cisappears, as in chess. The pieces seem to be quite powerful lut ii. can be very difficid to checkmade, cren if you lave a good advantage. The game develops faster than chess, fut rapidly derclops complexity so that a plaver may find lonself taking quite a long time to decide on a move. There is also an advantage in quantum chess in learming be moves of the warious pieces as equetions. This gives the garme a distinct uducational value ant allows an objective approach. One will soon attempt tricky moves from the logical standpcint of solutions to several equations after transforming. It is possible to develop a good deal of respect and facility for cartesian coordinates by merely playing this game, or other versions of it.

Adming A limension

'l'he quadruple symmetry of the moves of the various picces in quantim chess makes it casy to add a dimension of time to the motes. Up and down directions may be considered to belong to the y-- axis while sideways directions are the x^{-}axis. On a player's firsi move all pieces obcy the equitions $y-x-1,(y-1, x-1,2, \cdots+)$; $y=x^{2}+1, y=x^{2}+1$, and the given equation for the circle. On the same plaver's second move all pieces obey the same equations with x and y interchanged. On all odd moves, first, third, fifth, that a playcs makes his picecs can move only according to the cquations
given above. On all even moves piezes must obey the same equatons with x and y interchanged, as stated above for a sacond move.

Thus time enters into the game using the idea of odd and even parity moves. The time me altornately rotates the strategy of the game 90° so that one must keep thinking in terms of a change of parity on the next allowable moves. At the same time the power of the pieces diministes so that the total complexity of the game sayys about the same. However, since poreer has diminished in the pieces it will take longer to play a game with the time rule added. Captures will tend to secur with less frecuency through the same number of moves.

Hopelully students of mathematics will take up yuntum chess and develop their own versions so that they may enjoy many games while learning valuable mathematios.

Reforaces

1. Misurice Kraitchik, Mahematical Recruations, (New York: Dover, 1953), p]. 267-323.
2. Joieph S. Madachy, Mathematics on Vauation, (New Yock: Charke Soribner's Sons, I 966), pp. 34-54.
3. Martin Gardner, Martirt Carduer's New Mathematical Diversions from Sciontific dmerican, (New Yori: Simm and Schuster, 1606), pp. 70-81.
