Reprinted with Permission of Journal of Recreational Mathematics, JRM, V 4 No. 3, 1971 pp-199200. (This brought two solutions both answered in the negative, which to my eternal hindsight now seems obvious. One response published in JRM V 11(4) 1978-79 by Dr. B.L Schwartz, see below. In 2018 I used this binary cube idea to put color dice dotted sticker squares 2x2x2 Rubik Cubes so that black and white parts are always the same, sold some.)

An N-Dinensional Binary Coloring Problem

Hotghat A. Fingel
Dindst, Colorixion

It will take a four dimenaional brain to aolve this problem. No solution is k niwa to the author. 'lher reobem concems the binary coloring of n-dinemsional binary solids. By an rodimensioral binary solid is mennt at wild with edge equal to two units, all edges being perpendieufs as in-to aquare and cube. In two dinensions ue
 anils. In throse dimensions it would be a oube with a volume of sight unite and elges of two units. in four dimersione it would be whyperente with 16 unil cells. From this the reador con son what is meanh by an a dimencional hinary wotid.
There are only two ways weder the cepls of a 2×2 equare so that haif of the celts are black and the other haf white (exeluding rotations and reflections). Both of 'hase are symmetricel. That is, the pattern formed by the white squarss is ideutical io the patern lomed by the blak squares. The ene six ways to tolor the celly of a $2 \times 2 \mathrm{x}$
 thewe the black half is identical to the white half as the reater mansee in the werempainying Figure.

FIGTREI.
The protlem is therefore: Are all the biuary coloning of an andinernwinat binury
 idemical to that format by hle white celle, no mather how they ane coldered hall and Hishl'

The problem may be easy to solve, but considering the rapid increase in the number of patterns as n increases it is more likely a difficult problem. A proof, if the symmetrical proposition is true, would require the consideration of a great number of symmetries as n increases. For instance, a cube has 13 elements of symmetry which crystallographers increase to 23 by considering planes and a center, and so on. This author has not been able to go beyond the cube. Therefore, it may well be that the proposition is untrue, but it could be true and it would be a pleasant exercise to produce the patterns that comprise the binary colorings of the binary hypercube.
(Here is the last of the the two page answer by Dr. Schwartz Black and White Vertices of a Hypercube
JRM V 11(4) 1978-79 where the black dots show the black colored 1x1x1 cubes)

Figure 2. Noncongruent Black and white sets in the hypercuive.
would have to be one wth two llack vertics, and the only two Black vertices in Cube B are wot on a common tage.

Siace the White set focludes an all-Whit: square end the Back set foes not include any ill-Black sqrares, the two sets cannot be congruent.

REFERENCE

1. D. A. Engle, An N-Dimensional Binary Coloting Problen, JRM, $4: 3$, July 1971.

ADour une numpr
Dr. Schurartz holds degres in engleering, muthematicn, and operations resercht, and is currenty is grachate schod again in a health care program. He has been an incustrial mathenatician and analyst with man" oreanizaions over the mast twenty yeans. snd is corrently with Alaly tie Services, a private nonprofit study firm in the Washington, D.C. area. His fields of applicatimn includetransportation, wcapons systers, health, communication, recreation, and mapower. Ho has sevend dozen pablications in the Journals of mathenatics, operations research, and vomputerscience. For many years he hat been a reviewer andjer cditorial bcard member for the Operations Research jociety of Americh, Associntion for Computing Machinery, Mathematical Association of Americs (Mathematic: Magazse), and since 1970 ms asmciatt enitor of $/ R M$, to which he is t prolitic contributor of boti articles and problerts. He hasrecently taken on the job of editing a book serias on Recreational hathematirs for Baywood Publinhing Co. Voi. 1 is die out soon

